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PVS Strategies

I A conservative mechanism to extend theorem prover
capabilities by defining new proof commands, i.e.,

I User defined strategies do not compromise the soundness of
the theorem prover.
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Fermat’s Last Theorem (Bounded Version)

Prove the following lemma:

bounded_FLT3 : LEMMA

FORALL (a,b,c:posnat):

a <= 3 AND b <= 3 and c <= 3 IMPLIES

a^3+b^3 /= c^3

I Formalize Wiles’ general proof in PVS and instantiate it to
n = 3 or

I prove each one of the 27 cases.
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{-1} a <= 3

{-2} b <= 3

{-3} c <= 3

|-----

{1} a ^ 3 + b ^ 3 /= c ^ 3

Rule? (case "a=1 AND b=1 AND c=1")(flatten)

{-1} a = 1

{-2} b = 1

{-3} c = 1

...

|-----

{1} a ^ 3 + b ^ 3 /= c ^ 3

Rule? (replaces (-1 -2 -3))(eval-formula)

This completes the proof of bounded_FLT3.1.

Repeat this 26 times!
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Strategies

Strategies enable proof scripting:

I Programatic tasks, e.g., (case "a=1 AND b=1 AND c=1"),
. . . , (case "a=3 AND b=3 AND c=3").

I Repetitive tasks, e.g., (flatten)(replaces
...)(eval-formula ...).
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Strategy Language: Basic Steps

I Any proof command, e.g., (ground), (case ...), etc.

I (skip) does nothing.

I (skip-msg message) prints message.

I (fail) fails the current goal and reaches the next
backtracking point.

I (label label fnums) labels formulas fnums with string
label.

I (unlabel fnums) unlabels formulas fnums.
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Strategy Language: Combinators

I Sequencing: (then step1 ...stepn).

I Branching: (branch step (step1 ...stepn)).

I Binding local variables:
(let ((var1 lisp1) ...(varn lispn)) step).

I Conditional: (if lisp step1 step2).

I Loop: (repeat step).

I Backtracking: (try step step1 step2).
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Strategy Language: Sequencing

I (then step1 ...stepn):
Sequentially applies stepi to all the subgoals generated by
the previous step.

I (then@ step1 ...stepn):
Sequentially applies stepi to the first subgoal generated by
the previous step.
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Strategy Language: Branching

I (branch step (step1 ...stepn)):
Applies step and then applies stepi to the i ’th subgoal
generated by step . If there are more subgoals than steps, it
applies stepn to the subgoals following the n’th one.

I (spread step (step1 ...stepn)):
Like branch, but applies skip to the subgoals following the
n’th one.
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Binding Local Variables

I (let ((var1 lisp1) ...(varn lispn)) step):
Allows local variables to be bound to Lisp forms (vari is
bound to lispi).

I Lisp code may access the proof context using the PVS
Application Programming Interface (API).
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Conditional and Loops

I (if lisp step1 step2):
If lisp evaluates to NIL then applies step2. Otherwise, it
applies step1.

I (repeat step):
Iterates step (while it does something) on the the first
subgoal generated at each iteration.

I (repeat* step):
Like repeat, but carries out the repetition of step along all
the subgoals generated at each iteration.∗

∗Note that repeat and repeat* are potential sources of infinite loops.
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Backtracking

I Backtracking is achieved via (try step step1 step2).

I Informal explanation: Tries step, if it does nothing, applies
step2 to the new subgoals. Otherwise, applies step1.

I What does (try (grind) (fail) (skip)) do ?
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Example

What does (try (grind) (fail) (skip)) do ?

I if (grind) does nothing then (skip)

I if (grind) does something (without finishing the proof) then
(skip)

I if (grind) finishes the proof, then Q.E.D.

It either completes the proof with (grind), or does nothing.
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Writing your Own Strategies

I New strategies are defined in a file named pvs-strategies

in the current context. PVS automatically loads this file when
the theorem prover is invoked.

I The IMPORTING clause loads the file pvs-strategies if it is
defined in the imported library.
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Strategies and Rules

Strategies can be expanded into more elementary steps.

I Some strategies have a $-form for expanding their definitions,
e.g., grind$.

I Some strategies are automatically expanded in the proof
script, e.g., repeat.

Proof commands that cannot be expanded into elementary steps
are called rules and cannot be defined by regular users.
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Strategy Definitions

I defstep defines a strategy and its $-form:

(defstep name (parameters &optional parameters)

step

help-string format-string)

I defhelper defines a strategy that is excluded from the
standard user interface.

(defhelper name (parameters &optional parameters)

step

help-string format-string)

I defstrat defines strategy that expands automatically.

(defstrat name (parameters &optional parameters)

step

help-string)
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Example: Finite Loop

In pvs-strategies:

(defstrat for (n step)

(if (<= n 0)

(skip)

(let ((m (- n 1)))

(then@ step (for m step))))

"Repeats step n times")
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Using a Finite Loop

ex1 :

|-----

{1} sqrt(sq(x)) + sqrt(sq(y)) + sqrt(sq(z)) <= x+y+z

Rule? (for 2 (rewrite "sqrt_sq_abs"))

...

|-----

{1} abs(x) + abs(y) + sqrt(sq(z)) <= x+y+z
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Example: bFLT3

{-1} a <= 3

{-2} b <= 3

{-3} c <= 3

{-4} a ^ 3 + b ^ 3 = c ^ 3

|-----

Rule? (bflt3 ...)

In pvs-strategies:

(defstep bflt3 (a b c)

...

"Checks a^3+b^3 /= c^3 for 0 < a,b,c <= 3"

"Checking a^3+b^3 /= c^3 for 0 < a,b,c <= 3")
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(defstep bflt3 (a b c)

(let ((casestr (format nil "a=~a AND b=~a AND c=~a"

a b c)))

(spread (case casestr)

(...)))

"Checks a^3+b^3 /= c^3 for 0 < a,b,c <= 3"

"Checking a^3+b^3 /= c^3 for 0 < a,b,c <= 3")
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(defstep bflt3 (a b c)

(let ((casestr (format nil "a=~a AND b=~a AND c=~a"

a b c)))

(spread (case casestr)

((then (flatten)(replaces (-1 -2 -3))

(eval-formula -4))

(if (< c 3) (let ((nc (+ c 1))) (bflt3 a b nc))

(if (< b 3) (let ((nb (+ b 1))) (bflt3 a nb 1))

(if (< a 3) (let ((na (+ a 1))) (bflt3 na 1 1))

(grind)))))))

"Checks a^3+b^3 /= c^3 for 0 < a,b,c <= 3"

"Checking a^3+b^3 /= c^3 for 0 < a,b,c <= 3")
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(defstep bflt3 (&optional (a 1) (b 1) (c 1))

(let ((casestr (format nil "a=~a AND b=~a AND c=~a"

a b c)))

(spread (case casestr)

((then (flatten)(replaces (-1 -2 -3))

(eval-formula -4))

(if (< c 3) (let ((nc (+ c 1))) (bflt3 a b nc))

(if (< b 3) (let ((nb (+ b 1))) (bflt3 a nb))

(if (< a 3) (let ((na (+ a 1))) (bflt3 na))

(grind)))))))

"Checks a^3+b^3 /= c^3 for 0 < a,b,c <= 3"

"Checking a^3+b^3 /= c^3 for 0 < a,b,c <= 3")
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{-1} a <= 3

{-2} b <= 3

{-3} c <= 3

{-4} a ^ 3 + b ^ 3 = c ^ 3

|-----

Rule? (bflt3)

Checking a^3+b^3 /= c^3 for 0 < a,b,c <= 3,

Q.E.D.

Run time = 0.86 secs.

Real time = 3.29 secs.
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PVS Strategies are Written in Lisp

I Arbitrary Lisp expressions (functions, global variables, etc.)
can be included in a strategy file.

I PVS’s data structures are based on various Common Lisp
Object System (CLOS) classes. They are available to the
strategy programmer through global variables and accessory
functions.
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Proof Context: Global Variables

*ps* Current proof state
*goal* Goal sequent of current proof state
*label* Label of current proof state
*par-ps* Current parent proof state
*par-label* Label of current parent
*par-goal* Goal sequent of current parent
*+* Consequent sequent formulas
*-* Antecedent sequent formulas
*new-fmla-nums* Numbers of new formulas in current sequent
*current-context* Current typecheck context
*module-context* Context of current module
*current-theory* Current theory
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PVS Context: Accessory Functions

I (select-seq (s-forms *goal*) fnums) retrieves the
sequent formulas fnums from the current context.

I (formula seq) returns the expression of the sequent formula
seq.

I (operator expr), (args1 expr), and (args2 expr)

return the operator, first argument, and second argument,
respectively, of expression expr.
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PVS Context: Recognizers

Negation (negation? expr)

Disjunction (disjunction? expr)

Conjunction (conjunction? expr)

Implication (implication? expr)

Equality (equation? expr)

Equivalence (iff? expr)

Conditional (branch? expr)

Universal (forall-expr? expr)

Existential (exists-expr? expr)

Formulas in the antecedent are negations.
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Gold Mining in PVS

I In the theorem prover the command LISP evaluates a Lisp
expression.

I In Lisp, show (or describe) displays the content and
structure of a CLOS expression. The generic print is also
handy.
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Example

|-----

{1} sqrt(sq(x)) + sqrt(sq(y)) + sqrt(sq(z)) >= x+y+z

Rule? (lisp (show

(formula (car (select-seq (s-forms *goal*) 1)))))

sqrt(sq(x)) + sqrt(sq(y)) + sqrt(sq(z)) >= x + y + z is

an instance of #<STANDARD-CLASS INFIX-APPLICATION>:

The following slots have :INSTANCE allocation:

OPERATOR >=

ARGUMENT (sqrt(sq(x))+sqrt(sq(y))+sqrt(sq(z)),

x + y + z)

...
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A Non-(Completely-)Trivial Example

I Assume we have a goal e1 = e2.

I Our strategy is to use an injective function f such that
f (e1) = f (e2). Then, by injectivity, f (e1) = f (e2) implies
e1 = e2.

I For instance, to prove

{-1} cos(x) > 0

|-----

{1} sqrt(1 - sq(sin(x))) = cos(x)

we square both sides formula {1}, i.e., f ≡ sq.†

†The function sq is injective for non-negative reals.
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both-sides-f

(defstep both-sides-f (f &optional (fnum 1))

(let ((eqs (get-form fnum)))

(if (equation? eqs)

(let ((case-str (format nil "~a(~a) = ~a(~a)"

f (args1 eqs)

f (args2 eqs))))

(case case-str))

(skip)))

"Applies function F to both sides of equality FNUM"

"Applying ~a to both sides of ~a")

(defun get-form (fnum)

(formula (car (select-seq (s-forms *goal*) fnum))))
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Using both-sides-f

Rule? (both-sides-f "sq")

Applying sq to both sides of 1,

this yields 2 subgoals:

ex2.1 :

{-1} sq(sqrt(1 - sq(sin(x)))) = sq(cos(x))

[-2] cos(x) > 0

|-----

[1] sqrt(1 - sq(sin(x))) = cos(x)

ex2.2 :

[-1] cos(x) > 0

|-----

{1} sq(sqrt(1 - sq(sin(x)))) = sq(cos(x))

[2] sqrt(1 - sq(sin(x))) = cos(x)
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